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Difference methods are often appl ied  [1] to l iqu id  f i l t ra t ion  sub- 

j ect  to c o m p l i c a t e d  boundary condit ions.  If the p i t ch  is sma l l ,  this 
m a y  produce up to 10 l~ a lgeb ra i c  equat ions.  In the usual methods of 

7. 

Fig. 1 

solution ( i te ra t ion ,  e l i m i n a t i o n  of unknowns, etc.)  i t  is necessary to 

find a l l  solutions, which is ve ry  di f f icul t  when there  are m a n y  un-  

knowns and, as a rule ,  the methods  of solution g ive  only slow conver-  
g eric e. 

As regards the flow to a sampl ing  hole ,  i t  is suff ic ient  to know the 

pressures at points c lose to the water  surface,  so the Monte Carlo me th -  

od wide ly  used in two-d imens iona l  problems [2] can be  appl ied .  

NOTATION 

p--pressure,  
t - - t i m e ,  

x--pressure- t ransfer  coef f ic ien t ,  

H--s t ra tum thickness, 
D--wel l  d iamete r ,  

d - f l o w  d i ame te r  of samples ,  

F--flow area,  

- compress ib i l i ty  of the l iqu id ,  

g ~  of the porous m e d i u m ,  

/3*--reduced compress ib i l i ty ,  

m--poros i ty  factor ,  

k - - p e r m e a b i l i t y ,  

W--no. of steps of wander ing pa r t i c l e ,  

p -  absointe viscosi ty ,  

D(g) - -var ianee  es t imator ,  

ink--no,  of entr ies  to wel l  in 100 tests,  

m0--no, of entr ies  to wel l  in  1000 tests,  

s-- absolute error, 

6 - r e l a t i v e  error. 

Let N be  the number of tests and N i the number of t imes  the wan-  

dering pa r t i c le  enters the flow, wi th  nu the number  of entrees from 
in i t i a l  points l oca t ed  on e l e m e n t a r y  areas F v (u = ! ,  2, 3, 4) and w a 

random number.  
w Consider the ac tua l  geome t ry  of the t ransient  flow to the sam- 

pler  on a logging  cab le  and in a s t ra tum of l i m i t e d  thickness but  in-  

f in i te  ex ten t  (Fig. 1). The pressure dis tr ibut ion is [3J as follows for a 

homogeneous isotropic e las t i c  s t ra tum subject  to f i l t ra t ion  of a homo-  
geneous l iquid:  

ap ,~ Op (1A) 
V ~ P - - - a ~ i '  ~ - -  , ~ = ~ t ,  V ~ p =  ( , ~  + ~~ -07- ' 

whi le  the condi t ion of i m p e r m e a b i l i t y  at the boundaries  ab and ea c is 

Op/Oz=O for z~::b. 1/2H, l [ a i D ~ z ~ 4 - y ~ x ~  

the condi t ion  of i m p e r m e a b i l i t y  of the c l ay  l in ing  of the wel t  (d iam-  

eter  d) and of the seal ing uni t  is 

Op / Ox = Op / Oy = 0 for xa 4- y~ = ~/t D 2, z ~ 4- y2 ~ 1/4 d ~ , 

the  in i t i a l  condi t ion  is 

p ( x , y ,  z, t) lt=0 = P ~  for x ~4-  g 2 > ~ t / 4  D ~, 

the pressure in the  vessel  after the start of the flow is 

P =po(t) for t > 0 ,  

x 2 +  g~ =1/4  D 2, z ~4- y ~ < l / ~  d2, x > 0 ,  

and the flow through the sampler  surface is [4] 

q ( t ) = ~ 4 d P  (t) dF, ~ k  = z ( r a ~ 4 - ~ ~  = ~ * .  (1.2) 

We rep lace  the d i f fe ren t ia l  equat ion  by a di f ference one with a 
rec tangular  net:  

V~p Op Op _ OZp ~ O~p , O~p 

p (x, y, z, "r 4- h~) 

_ P (x @ h x, y ,  z, "~) - 2 p (x, y,  z,  "c) 4-  p (x - hx, y ,  z, "~) ~. 

I 

hx 2 

p (re, y ~- hy, z, z) - -  2p (x, y, z, "~) z- p @, y - -  hy, z, ~:) 4- 
hy 2 

p(x, y, z 4-hz, 1:)-- 2p(x, y, z, v) ~ p (x, y, z - -h z ,  T) 
h z  Z 

We put p(x, y, z, r) = p and take  a uniform net hx = hy = hz = h: 

p(~ +h0 = ( t -  6h'~h~ j p+ 

h.  h + p (~ + h ) ~  + p(~-- h) -~- + p(y + h ) @  + 

h~ hr 
@ p ( y - - h ) ~ ' .  4- p(z  ~ h)~2. 4- p ( z - - h ) - ~ - .  

We put hT/h z = a; then 

p ( ~ + h , ) = ( i - - 6 c ~ )  p +  

+ c~ [p (x + h) + p (x--h) + p (y + h) -4- 

+ p (u--h) + p (z + h  ) + p (z--h)l  �9 

We take  the re la t ion  be tween  the t i m e  sca le  and the p i tch  of the 
ne t  such that  i - 6 a  = 0, so ct = h r / h  z = 1 /6  and h r  = ha~6, 

p ( ~ + h  0 = l h [ p ( z + h ) + p ( z - h ) - ~  p ( u + h ) +  

4- p (y--h) 4- p (z q- h) 4- p (z-wh)] . 

The solution may  thus be  r ea l i zed  as a random process with pro- 

bab i l i t y  1 /6 .  

The p lane  z = :[: ~/2 H, ~/~ D 2 ~< x 2 4- ~ < ~r 

0_.p_P = 0 ,  P ( z ) - - P ( z - - h ) =  O,  
Oz h 
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The cylindrical surface of the borehole x ~ + y~" = a/a D ~ 

Op _OP _ 0 ,  p ( x ) - - p ( x - - h )  =0 ,  
Ox Oy h 

p (y) - -  p (y - -  h) =0, 
h 

excluding the part of the surface ya + z 2 = d2/4, x = 0, where p(x, y, 

z, r) = po(r)- 
The ini t ial  point 

p (T= 0) ~p~ for x ~q- y2~___I/a D 2 

Here p(z) = p(z -- h) is reflection from the boundaries of the stra- 

tum and p(x) = p(x -- h), p(y) = p(y - h) is reflection from the surface 

of the well, 

w To find the pressure at any point by this method it is necessary 

to perform a sufficient number of random walks from that point in 

order to find the mathemat ica l  expectation for the capture probability, 

which will [5] be an approximate value for the solution for that point. 
The following rules are used. At each node we perform a random 

E 

E 

region and produces reflection; 4 tests for entry to the runoff; 5 calcu- 

lates the pressure in the vessel; 6 monitors the number of tests; 7 pro- 

Z~8 

O ZO *0 

Fig. 4 

duces t ime stepping and monitors r; 8 detects that the part icle  has not 

entered the runoff and calculates  the stratal pressure; and 9 derives 

the mathemat ica l  expectation from (2.1). 

A standard program for the M-20 computer has been compiled on 

this basis, and the fo1iowing calculations have been performed. 

1) The pressure distribution along the x-axis,  along a generator 

of the well,  and along the perimeter in the xy-plane (Fig. 3). The 
calculations were performed for H = 200 cm, D = 20 cm, r = 200 em a, 

h = 0.5 cm, N = i000, p0(T) = 0, p~ = i. 

The variation along the x-axis  (curve 1) is comparat ively slow, 

: - ' - ]~ being more rapid along the generator (curve 2) and most rapid along 

the perimeter (curve 3), 

2) Points on the x-axis  have the following dependence of pressure 

p on time. 

~g=3 6 9 12 t5 18 2t ( x = l t )  
p=0 .44  0.39 0.38 0.37 0.30 0.35 0.35 

"t'=5 t0 I5 20 25 30 35 (x=12) 
] p=0.67  0.63 0.61 0.60 0.59 0.59 0.59 

"~=20 40 60 80 t00 120 t40 (~=15) 
p=0.86  0.84 0.83 0.82 0.81 0.81 0.80 

Fig. 2 "r 100 i59 200 250 300 350 (z=22) 
p=0.97  0.96 0.95 0.94 0.94 0.94 0.94 

choice, which gives the point to which the wandering part icle  must 
pass. If this operation at a special node on the runoff surface with a 

given pressure leads to its stopping there, this capture is recorded, and 

the random walk begins again from the ini t ial  point. If the random 

walk takes the part icle through the special nodes at the boundaries of 

the stratum and the surface of the well,  then the point is reflected. If 

the particle has not entered the runoff after W steps, the stratum pres- 

sure is calculated (the pressure in the sampler is calculated in the con- 
verse case). This process is repeated a sufficient number of times, and 

the number of captures is divided by the number of repetitions to get 

the approximate va!ue of the solution for the node from which all the 

random walks began: 

N1 / N ~ \  
J)i ('r.) ~ ~ -  po (T;) @ ~ ' t - - !~a)  p~ " (2.1) 

Figure 2 shows the block diagram for the process; i introduces the 

program and the init ial  data; 2 generates tile random number to, de- 

4 8 x 

Fig. 8 

Figure 4 has been constructed from these results. For x = ii and 

x = 12, the pressure reaches the asymptotic value for r = 80 cmz. 

(0Z PUs) (/.5) 
f 

P 

/0 /9 /8 

Fig. 6 

3) The pressure distribution along the x-axis was calculated for 
(d, r) pairs as shown in Fig. 5. The diameter of the depression funnel 

increases with the diameter of the sampler inlet, 

w Expression (1.2) contains the pressure gradient along the normal 

to the flow surface, which was determined approximately in ca lcula-  

tion of the liquid flow as the ratio of the pressure at some point to the 

distance of the point from the flow surface, the pressure being given by 

(2.1). As it was assumed that the filtration geometry affects the flow 

rate, 13 points were taken at 0.3 cm from the surface with a disposi- 

tion as shown in Fig, 6, which were used in calculat ing the mean 

pressure gradients. ]?he l iquid flow rate was then calculated as the sum 

of the rates of flow through the individual areas. 

The calculations were carried out as follows. ]?he pressure gradient 

is approximately 

fines one of the six possible directions, and produces the random walk d ~  
in the corresponding spatial coordinate; 8 tests for entry to the boundary (x) ~ 3.33 [p~ ('r - -  Po (~)1 (i = i ,  2, 3 . . . . .  t 3 ) .  (8,1) 
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Fig. 7 

T,  c m  2 

0.01 
0.2 
0.4 
0.6 
0.8 
i.O 
1.2 
1.4 
1.6 
i.8 
2.0 

q (~). cmVsec 

D =20 D =60 

26.75 26.75 
i t  .59 t t . 5 9  
9.33 9.33 
8.33 8.33 
7.79 7.79 
7.43 7.43 
7 . t7  7 . i 7  
6.96 6.96 
6.82 6 .82 
6.69 6.69 
6 .6t  6 .6 t  
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T = 0 . 2  0.4 0.6 
q = t . 8 2  1.67 t .69  

T = 0 . 2  0.4 0.6 
q = t t . 5 9  9.33 8.33 

�9 = 0 . 3  0.6 0.9 
q = 2 8 . t 7  21.73 ~ 9 . t l  

The flow ra te  through the  surface for each  t i m e  in te rva l  is 

qj ('Q = 3.33• {[Pl (~) - -  .Do ('Q] F: -F 

5 

9 13 

E-Is ? 1} 4- pl (*) - -  po (.c) F,  q- -g pr ('r) - -  po (~) F4 
i=6 

( / = 1 , 2 ,  3 . . . . .  i t ) ,  

F = 2.25 a ,  F,  = 0.0625 a ,  Fe = 0 . t 8 7 5  a~, 

Fe = 0.75 n,  F 4 = t .25 r~ . (3.2) 

The m e a n  pressure g rad ien t  on each area for p0(r) = 0 is g iven  by 
(2.1) and (3,1) by  

where 

= 

5 S 

9 9 

~.~,  Pi('t"' = ( t -  t N,;.)p ~ 

13 18 

= 4N r ) 
_~. r p~ (.r) __ (1 1 N , 

n I ~ ~71~ 

5 9 12 

f .~ N i , lze=1~7] dVi, 7~4~ t ~ n~_ = ~- -~- -~ N{.  (3.3) 
~ = 2  i ~ 6  i ~ 1 0  

It is more conven ien t  to opera te  with the n of (3.3) than with the 

m a t h e m a t i c a l  expec ta t ion  of (2.1); Men (3.2), wi th  a l lowance  for the 

Fp (v = 1,2,3,4) becomes  

qj(.r) ~ 0.05083 ax[3* {36 p~ - -  p~  [n~ -,:- 

+ 3n2 @ t2n3 q- 20n4]}. (3.4) 

Results from (3.4) are g iven  below.  
1. Effects of D. Ca lcu la t ions  were m a d e  for D of 20 and 60 cm 

with x = 10 s cme/sec ,  H = 200 cm, d = 3 cm, B* = 3 �9 10 -5 cmZ/kg,  

p~ = 1 k g / c m  z, p0(r) = O, N = 1000, and h = 0.1 cm ( taMe).  

The results show tha t  the flow ra te  is a lmost  independent  of D (the 

di f ference l i e s  at  the l i m i t  of error of the ca lcu la t ion) ,  because  there 

is no re la t ion  be tween  D and the pressure gradien t .  
2) Effects of H. The flow ra te  was c a l c u l a t e d  for H of 10, 20, 40, 

80, and 200 cm,  with the other pa ramete r s  the same; the effect  of H 

was very  s l ight ,  the  f low ra te  q = 6.612 cmS/sec  be ing  as for r = 2 

cm 2. i . e . ,  the di f ference was less than the error. This occurs m a i n l y  

because  the depression funnel  extends only a smal l  way a iong the gen-  

erator (Fig. 8), so H in f luences  q only when H is comparab le  with d. 

3) Effects of d. Figure 7 g ives  results for d of 1, 3, and 6 cm with 

the other pa ramete r s  as above.  

0 .8  t . 0  t . 2  t . 4  t . 6  t . 8  2 .0  ( d = l )  
1.56 t .54  t .51  t . 50  t . 50  1.48 1.47 

0.8 t .0 1.2 1.4 t .6 t . 8  2 .0  (d=3)  
7.79 7.43 7 . t7  6.96 6.82 6.69 fi.61 

t .2 1.5 t . 8  2 . t  2 .4  2.7 3 .0  (d=6)  
17.50 16.54 15.75 15.11 14.55 14.34 14.18 

The results r evea l  a nea r ly  l i nea r  dependence  of q on d, the ap-  
proach to the asymptote  be ing  the more rapid the smal le r  d. 

w There are two m a i n  sources of error in ca l cu la t ing  the pres-  

sure gradien t :  r e p l a c e m e n t  of the d i f fe ren t ia l  equa t ion  by  a d i f ference  

equa t ion  and use of the Monte Carlo method.  

1) By ana logy  wi th  the Runge-Kut ta  p r inc ip le ,  the error of ap-  

p rox ima t ion  for (1.1) is [6] 

i R J ~ h 2 (1/13 M ~ - - I / 4  M1) . (4.1) 

The error inc ludes  second-  and fourth-order  der iva t ives .  As an 

a n a l y t i c  expression for the funct ion is not ava i l ab l e ,  these der iva t ives  

can  be found only  app rox ima te ly .  Large errors arise ha rep lac ing  fourth- 

order der iva t ives  by d i f fe rence  re la t ions ,  and so the result  does not 

r e f l ec t  the true error of approx imat ion ,  so the fol lowing approach was 
used. The pressure was c a l c u l a t e d  with steps of h and 2h (0.706, 0.743) 

at  a g iven  point ,  which  g ives  the va lue  of the funct ion at the point  

wi th  an e s t ima te  of the error: 

I B1 I ~ he (1/1~- M~. --1/4 M1), 

I Be 1% (2 h p  (~& M e - - V 4  M~). 

The m a x i m u m  error for a step of 0.5 cm is 

lh2 M 2 - - 1 / 4  M1 = 0 . 0 3 7 .  

This is subst i tuted into (4.1) to g ive  [RI -< 0.0093, so 6 -< 1.3% for 

the pressure gradient  at  the surface.  

3) The error of the Monte Carlo me thod  is e s t ima ted  with a pro- 

b a b i l i t y  of 0.9 as 

= 1o4 yoJD(~,), 

D (~) = (gl - -  g~ + (g~ - -  U) ~ + ' "  § (~1o-- go)2 
10 - -  t 

~~ = ().001ma, ~/~ = O.O~ra]; (k = t, 2, 3 . . . .  , t0) . (4.2) 

The number  of entr ies  to the ex i t  surface was c a l c u l a t e d  per 100 

and 1000 cyc les ,  which from (4.2) g ives  e = 0.048 and 6 = 6.4%. 

The r e l a t i v e  error of the ca l cu l a t i on  thus does not exceed  7.7%. 
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